Skip to main content

Augmented Reality SDK - Comparison

Uh very hectic day... do not wanted to drop on "Learn something interesting today". Wanted to find out options for Augmented Reality development for new projects planning to kick off tomorrow. Here is what I found... what I think a very rare and interesting comparison on Augmented Reality SDKs. A feast for AR aspirant. Enjoy!!!

http://socialcompare.com/en/comparison/augmented-reality-sdks

Comments

  1. Agree . that if you want to start developing applications of augmented reality, then it's better to start with some ready-made components rather than reinvent your bike from scratch. Read the updated 2018 list of the best AR platforms and choose the most suitable ( https://invisible.toys/best-augmented-reality-sdk/ )

    ReplyDelete

Post a Comment

Popular posts from this blog

Just Buzz... Where is AI?

Speaking to Recode’s Kara Swisher and MSNBC’s Ari Melber, Pichai said AI is “one of the most important things that humanity is working on. It’s more profound than, I don’t know, electricity or fire,” adding that people learned to harness fire for the benefits of humanity, but also needed to overcome its downsides, too. Pichai also said that AI could be used to help solve climate change issues, or to cure cancer. We are seeing some exciting things in the industry, Samsung’s massive 8K TVs apparently use AI to upscale lower resolution images for the big screen. Sony has created a new version of the Aibo robot dog, which this time promises more artificial intelligence. Travelmate’s robot suitcase will use AI to drive around and follow its owner wherever they go.  Kohler has invented Numi, a toilet that has Amazon’s Alexa voice assistant built in etc., But despite all this, it does leave me wondering: is artificial intelligence really what we should be calling this revolution?...

Effective Pattern Identification Model for DDoS Attack Detection

Abstract: Distributed Denial of Service (DDoS) attacks are one of the major challenges to Internet community. Attackers send legitimate packets with often changing information from various compromised systems at random and at a very high frequency, rendering the target non-responsive for normal traffic. DDoS attacks are difficult to detect with traditional detection methods and standard Intrusion Detection Systems (IDS). Standard IDS tries to analyze the network traffic or system logs trying to identify emerging patterns on the network traffic. But due to randomness of the package origins it is difficult segregate true, false positive and normal traffic. This paper proposes a model based on Artificial Neural Networks to identify anomalies and detect DDoS patterns. In the proposed system sets of known characteristic features, which can separate attacks from normal traffic, are fed to the system to train the Artificial Neural Networks (ANN). This self learn system improves with each n...

Machine Learning Challenges with Imbalanced Data

Abstract: Application of Machine learning algorithms to some of the real-world problems pertaining to areas, like fraud/intrusion detection, medical diagnosis/monitoring, bio-informatics, text categorization and et al. where data set are not approximately equally distributed suffer from the perspective of reduced performance. The imbalances in class distribution often causes machine learning algorithms to perform poorly on the minority class. The cost minority class mis-classification is often unknown at learning time and can be far too high. A number of technique in data sampling, predominantly over-sampling and under-sampling, are proposed to address issues related to imbalanced data without discussing exactly how or why such methods work or what underlying issues they address. This paper tries to highlight some of the key challenges related to classification of imbalanced data while applying standard classification technique. This discusses some of the prevalent methods related ...